Studia podyplomowe Manager Projektów AI

Zapraszamy na studia Manager Projektów AI współorganizowane z uczelnią WSZIB. Kierunek studiów AI został stworzony z myślą o osobach, które chcą zdobyć wiedzę i umiejętności w zakresie zarządzania projektami z wykorzystaniem sztucznej inteligencji.
Zapisz się na studia i zdobądź nową, cenną wiedzę pozwalającą na efektywne kierowanie projektami z wykorzystaniem AI!

Zarezerwuj miejsce już dziś i skorzystaj z 10% rabatu!

O kierunku
Manager Projektów AI

Studia podyplomowe Manager Projektów AI to propozycja dla osób, które chcą zdobyć kompleksową wiedzę na temat najnowszych technologii i narzędzi stosowanych w projektowaniu z wykorzystaniem sztucznej inteligencji. Podczas zajęć nasi wykładowcy –  eksperci w dziedzinie zarządzania projektami i sztucznej inteligencji podzielą się swoim doświadczeniem oraz pokażą, jak wygląda praca na stanowisku Managera Projektów związanych z AI.

Studia adresowane są zarówno do osób, które dopiero rozpoczynają swoją karierę zawodową w tym obszarze, jak i do osób z doświadczeniem w pracy z technologiami informatycznymi. Wiedza zdobyta podczas studiów Manager Projektów AI będzie przydatna zarówno w pracy w firmach zajmujących się sztuczną inteligencją, jak i w każdej innej branży, w której wykorzystywane są nowoczesne technologie.

Studia podyplomowe AI to doskonała inwestycja w przyszłość!

Pobierz ofertę studiów

Praktyczny charakter zajęć

Zajęcia prowadzone przez Praktyków

Możliwość uczestnictwa 100% online

Dostęp do międzynarodowej platformy szkoleniowej Opexity

Wyjazd do niemieckiej Fabryki Porsche dla chętnych

Możliwość przygotowania projektu z wykorzystaniem AI pod okiem Ekspertów

9 zjazdów weekendowych

2 semestry

Prestiżowe certyfikaty

Program studiów podyplomowych AI

01 Sztuczna Inteligencja - wprowadzenie (13h)

  • Fundamenty sztucznej inteligencji (podstawowe definicje, ewolucja modeli i algorytmów),
  • Dylematy poznawcze i etyczne,
  • Rodzaje sztucznej inteligencji:
    • Forecasting vs Image processing,
    • Oprogramowanie AI vs ucieleśniona AI,
  • Sztuczna inteligencja w codziennym życiu,
  • Sztuczna inteligencja w przemyśle – wprowadzenie:
    • Utrzymanie parku maszyn,
    • Forecasting – wsparcie procesu decyzyjnego / planowanie sprzedaży,
  • Narzędzia budowania modeli sztucznej inteligencji – praktyczne ćwiczenia.

02 Źródła danych w procesach przemysłowych (6,5h)

  • Źródła danych w procesach przemysłowych.
  • Big Data.
  • Omówienie pojęcia – Key Performance Indicators (KPI).
  • Zasady wyznaczania KPI.
  • Wizualizacja i monitorowanie KPI.
  • Wybór i interpretacja wskaźników w obszarach operacyjnych firmy (produkcja / jakość/ utrzymanie ruchu / logistyka).
  • Systemy informatyczne wspomagające zbieranie danych z procesów operacyjnych.

03 Rozwiązania infrastrukturalne dla AI (6,5h)

  • Podstawowe koncepcje i terminologia:
    • AI i różne podejścia do jej implementacji,
    • Komponenty infrastruktury (obliczenia, pamięć, sieci komunikacyjne, itp.).
  • Analiza głównych komponentów infrastruktury dla sztucznej inteligencji (np. chmura obliczeniowa, klastry GPU, klastry danych).
  • Zarządzanie danymi i bezpieczeństwo w Infrastrukturze AI:
    • Omówienie roli danych w sztucznej inteligencji oraz sposobów zarządzania danymi w infrastrukturze AI,
    • Tworzenie efektywnego systemu zarządzania danymi, obejmującego procesy zbierania, przetwarzania, indeksowania i archiwizacji danych,
    • Przegląd rozwiązań o wysokiej wydajności, które mogą obsłużyć duże ilości danych i zapewnić skalowalność i szybki dostęp do nich,
    • Znaczenie bezpieczeństwa danych i prywatności w kontekście sztucznej inteligencji.
  • Chmury obliczeniowe i Ich znaczenie dla sztucznej inteligencji:
    • Szczegółowe omówienie roli chmur obliczeniowych w obszarze sztucznej inteligencji,
    • Przykłady popularnych platform chmurowych i ich zastosowań.

04 Podstawy statystyki w analizie danych (6,5)

  • Interpretowanie i opisywanie danych za pomocą statystyki opisowej: pojęcia średniej arytmetycznej, mediany, mody i kwantyla,
  • Różnica między korelacją a przyczynowością,
  • Podstawy teorii prawdopodobieństwa, zbiorów i twierdzenia Bayesa,
  • Założenia regresji liniowej i jej zastosowanie – ćwiczenia praktyczne,
  • Zastosowanie rozkładu normalnego i dwumianowego – ćwiczenia praktyczne,
  • Rozkład próbkowania, dlaczego centralne twierdzenie graniczne jest ważne,
  • Znaczenie przedziałów ufności i sposób ich opisywania p-value,
  • Zrozumienie błędów i wyborów związanych z testowaniem hipotez.

05 Analiza danych z wykorzystaniem języków skryptowych (13h)

  • Przegląd programistycznych środowisk pracy.
  • Podstawy programowania w języku Python: 
    • Pojęcie zmiennej i podstawowe struktury danych,
    • Korzystanie z ogólnie dostępnych pakietów,
    • Wczytywanie i wizualizacja danych w wykorzystaniem języka Python i notatnika Jupyter,
    • Wprowadzenie do pakietu Pandas i Seaborn,
  • Środowisko pracy, a dostęp do danych – ćwiczenia praktyczne,
  • Wprowadzenie do środowiska Jupyter (Google Coollaboratory) – ćwiczenia praktyczne,
  • Ćwiczenia z pakietu Pandas i Seaborn – ćwiczenia praktyczne.

06 Analityka Big Data vs. Sztuczna Inteligencja (6,5h)

  • Organizacja procesu gromadzenia, oczyszczania i anonimizowania, integracji oraz agregacji danych.
  • Wydobywanie z danych cennych biznesowo informacji.
  • Screening rynku oraz pozyskanie i analizowanie pod kątem określonych problemów biznesowych wielu milionów rekordów w krótkim czasie w odniesieniu do zagadnień takich jak:
    • Automatyzacja procesów biznesowych (w tym sprzedaży i obsługi klienta),
    • Optymalizacja produkcji i dystrybucji,
    • Planowanie zapasów magazynowych,
    • Prognozowanie trendów rynkowych.

07 Leadership (13h)

  • Istota przywództwa:
    • Przywództwo a zarządzanie.
    • Cechy przywództwa.
    • Zachowania wpisane w efektywne, pozytywne przywództwo.
  • Sytuacyjne podejście do przywództwa:
    • Zarządzanie wg Blancharda.
    • Przywództwo na poszczególnych etapach rozwoju zespołu.
    • Podejście indywidualne do pracowników w zależności od ich poziomu kompetencji i motywacji.
  • Zarządzanie sytuacjami trudnymi:
    • Rola komunikacji i sprawnego przepływu informacji w budowaniu i utrzymywaniu autorytetu.
    • Style rozwiązywania konfliktów.
    • Konstruktywne, indywidualne i zespołowe rozwiązywanie sytuacji trudnych i problematycznych.
    • Asertywność i panowanie nad emocjami w rozmowach ze współpracownikami – podstawy inteligencji emocjonalnej.

08 Zwinne zarządzanie w projektach IT & Data Science (13h)

  • Charakterystyka zespołu w kontekście procesu wytwarzania oprogramowania – role vs. odpowiedzialność,
  • Ewolucja i porównanie metodyk Waterfall, Scrum, Kanban,
  • Wyzwania organizacji pracy z wykorzystaniem metodyk zwinnych w kontekście Data Science,
  • Gra symulacyjna – doświadczenie pracy w zespole Scrumowym i przedyskutowanie wiele pytań oraz sytuacji, które zdarzają się podczas codziennej pracy,
  • Cyfrowe przestrzenie współpracy (backlog, kanban, ci/cd):
    • Synchroniczne vs. asynchroniczne podejście do współpracy,
    • Narzędzia organizacji pracy i koordynacji projektów wykorzystywane w branży wytwarzania oprogramowania i Data Science,
    • Wykorzystanie jednego z narzędzi chmurowych do utworzenia i zdefiniowania struktury projektu oraz ćwiczenia z komunikacji wewnątrz projektowej.
  • Wykorzystanie jednego z narzędzi chmurowych do utworzenia i zdefiniowania struktury projektu oraz ćwiczenia z komunikacji wewnątrz projektowej – ćwiczenia praktyczne.

09 Cyberbezpieczeństwo (13h)

  • Omówienie pojęcia cyberbezpieczeństwa, cyberprzestępczości i cyberataku: rodzaje zagrożeń, typy atakujących, motywacja.
  • Czy warto dbać o bezpieczeństwo technologii informatycznych? Rachunek zysków i strat.
  • Implementacja cyberbezpieczeństwa w przedsiębiorstwie.
  • Poprawa bezpieczeństwa ludzi, procesów i technologii.
  • Pryncypia cybersecurity.
  • Technologia: Usługi audytu zerowego (security assesment) i stałego utrzymania cyberbezpieczeństwa przy użyciu Security Operations Center (SOC).
  • Procesy i weryfikacja stanu aktualnego wraz z przygotowaniem roadmapy cyber dla 12 miesięcznego okresu.
  • Ludzie: weryfikacja wiedzy dot. higieny cybersecurity.
  • OSINT, socjotechnika i ataki typu phishing wraz z przykładami.
  • Hasła dostępu: wytyczne, metody weryfikacji wycieku, menedżery haseł i Two-factor Authentication (2FA).
  • Bezpieczeństwo urządzeń w firmie oraz w warunkach domowych.
  • Dobre nawyki cybersecurity: wytyczne, szkolenia security awareness, symulowane kampanie phishingowe.

10 Machine learning (13h)

  • Uczenie nadzorowane:
    • Regresja,
    • Klasyfikacja,
    • Rekomendacja,
  • Overfitting and underfitting,
  • Hiperparametry i zbiory walidacyjne:
    • Cross-validation,
    • K-fold validation
  • Uczenie nienadzorowane:
    • Detekcja anomalii i klasteryzacja,
  • Deep and reinforcement learning.

11 Wykorzystanie Sztucznej Inteligencji w przemyśle (13h)

  • Wyzwania w organizacji we wdrażaniu AI:
    • Wartość biznesowa,
    • Zespół,
    • Dane,
    • Procesy,
    • Technologia,
    • Kultura organizacji,
  • Sztuczna inteligencja w zakresie optymalizacji i utrzymania produkcji. Automatyzacja z wykorzystaniem AI,
  • Forecasting. Prognozowanie sprzedaży.

Certyfikaty, które możesz zdobyć po ukończeniu studiów ze sztucznej inteligencji

Świadectwo ukończenia studiów podyplomowych Manager Projektów AI

Świadectwo wydawane jest przez Wyższą Szkołę Zarządzania i Bankowości w Krakowie.

Manager Projektów AI

Certyfikat wydawany przez LUQAM po ukończeniu studiów.

Industry 4.0 and cybersecurity

Certyfikat ekspercki po ukończeniu szkolenia Industry 4.0 and cybersecurity na platformie szkoleniowej Opexity

Informacje szczegółowe Studia podyplomowe AI

Aby zapisać się na studia należy:
  • zapoznać się z regulaminem studiów,
  • zarejestrować się na stronie rekrutacji Wyższej Szkoły Zarządzania i Bankowości wybierając studia prowadzone przez LUQAM,
  • dostarczyć osobiście, przesłać pocztą lub mailowo do biura rekrutacji: ksero/skan dyplomu ukończenia studiów wyższych, 1 zdjęcie w kolorze (legitymacyjne/dowodowe), dowód opłaty rezerwacyjnej w wysokości 100 zł, zaliczanej na poczet czesnego (na podstawie umowy o odpłatności za studia) oraz informacje o liczbie rat za studia (całość/ 2 raty).
Rekrutacja trwa do 30.09.2024 r.
Opłaty rezerwacyjnej należy dokonać na konto bankowe:
Wyższa Szkoła Zarządzania i Bankowości
ul. Kijowska 14 30-079 Kraków
Numer konta: 61 1440 1127 0000 0000 0193 3148
tytułem: nazwa kierunku_imię i nazwisko kandydata_2024/2025

Płatność w 1 racie: 6900 zł brutto

Płatność w 2 ratach: 7100 zł brutto (2 x 3 550zł brutto)

Terminy płatności:

Zgodnie z terminami podanymi w umowie o naukę.

  • 3% dla 2 lub więcej osób zapisujących się wspólnie na studia.
  • 3% rabatu dla osób, które ukończyły studia licencjackie, inżynierskie lub magisterskie w bieżącym roku akademickim (tj. 2023/2024).
  • 10% przy zapisie na studia do 30.06.2024 r.*
  • 15% dla firm grających w Lidze Mistrzów 5S LUQAM.
  • Jednorazowy rabat o wartości 500 zł dla absolwentów Wyższej Szkoły Zarządzania i Bankowości w Krakowie.
  • Zniżki korporacyjne rozpatrywane są indywidualnie.

Rabaty nie sumują się. Podczas rekrutacji należy poinformować Uczelnię o obowiązującej zniżce.

*Aby odebrać zniżkę należy przejść przez pełen proces rekrutacji tj. wypełnić formularz rekrutacyjny, wpłacić wpisowe oraz dostarczyć dokumenty na Uczelnię do 30.06.2024 r.

Liczba semestrów: 2 – zajęcia rozpoczynają się w październiku 2024, a kończą w czerwcu roku kolejnego.

Liczba zjazdów: 9

Zajęcia: sobota i niedziela 09.00-15.30

W ramach programu część zajęć będzie prowadzona w formie wideokonferencji realizowanej na żywo. W zależności od sytuacji epidemiologicznej w kraju, liczba godzin zdalnych (na odległość) i form on-line może ulec zwiększeniu.

Istnieje możliwość uczestnictwa w zajęciach w 100% zdalnie (w uzasadnionych przypadkach za zgodą kierownika kierunku).

Część zajęć może być prowadzona wspólnie z innymi kierunkami.

Zasady zaliczenia:

  • Egzamin dyplomowy.
  • Minimum 70% obecności na zajęciach.

Zapisz się na studia AI i weź udział w wyjeździe do Porsche Stuttgart w promocyjnej cenie!

Zapisz się na studia AI i weź udział w wyjeździe do Porsche Stuttgart w promocyjnej cenie!

Rekrutacja na studia ruszyła!

Wypełnij formularz i zarejestruj się na studia podyplomowe na stronie WSZiB i skorzystaj z 10% rabatu (przy zapisie do 30.06.2024r.).

Masz pytania? Zadzwoń +48 730 822 627.

Zarejestruj się!

Prowadzący studia podyplomowe z zarządzania projektami AI

Bartłomiej Rachwał

Pracownik badawczo-dydaktyczny na Wydziale Fizyki i Informatyki Stosowanej Akademii Górniczo-Hutniczej w Krakowie. Stopień doktora nauk fizycznych uzyskał w ramach badań z dziedziny analizy danych w fizyce cząstek elementarnych uczestnicząc w międzynarodowej współpracy LHCb w ośrodku CERN (Szwajcaria), gdzie jednym z podstawowych elementów jego działalności był rozwój oprogramowana eksperymentu oraz analiza danych. Dydaktyk wdrażający nowe technologie w proces dydaktyczny zarządzania projektami, wytwarzania oprogramowania, czy wykorzystania technologii AR/VR. Założyciel i kierownik dydaktycznego laboratorium VR. Jeden z głównych architektów przepływu informacji oraz administrator wydziałowych serwisów zarządzania pracą. Certyfikowany menadżer PRINCE2. Entuzjasta metodyk zwinnych, inicjator współpracy środowiska akademickiego z przemysłem. W LUQAM pełni funkcję koordynatora projektów R&D w zakresie oprogramowania.

Adam Dendek

Doktor nauk fizycznych oraz Data Scientist z sześcioma latami doświadczenia komercyjnego w projektach dotyczących budowania modeli uczenia maszynowego oraz analizy danych. Stopień doktora uzyskał na podstawie projektu realizowanego dla eksperymentu LHCb w ośrodku badawczym CERN, w ramach którego stworzył model bazujący na uczeniu maszynowym do rekonstrukcji śladów cząstek długo życiowych. Po zakończeniu kariery naukowej, pracował w przemyśle zajmując się przetwarzaniem danych tekstowych (NLP), klasyfikacją tekstów oraz wykrywaniem anomalii. Jest fanatykiem wysokiej jakości kodu oraz testowania. Obecnie pracuje na stanowisku Senior Data Scientist w Bayer.

Patryk Przygocki

Trener i Konsultant LUQAM. Specjalista ds. systemów zarządzania jakością ISO 9001:2015, IATF 16949:2016, zarządzania projektami, oraz audytor procesu wg wymagań VDA. Posiada 12 lat doświadczenia zdobytego na różnych stanowiskach w firmach produkcyjnych. Przez większość kariery zawodowej związany z branżą automotive, gdzie doszedł do stanowisk Kierownika Jakości i Produkcji. Kierował kilkudziesięcioma projektami przemysłowymi o różnym charakterze, wielkości i budżecie. Stosując przy tym zarówno klasyczne, jak i zwinne metody zarządzania projektami. Z sukcesem i od podstaw wdrażał systemy zarządzania jakością oraz dostosowywał procesy do wymagań rynku i klientów. Konsultant i trener LUQAM z zakresu Zarządzania Projektami (PMBOK, Prince2, Scrum), wymagań ISO 9001:2015, wymagań IATF 16949:2016, wymagań podręczników referencyjnych AIAG i VDA, definiowania i mapowania procesów, Lean Manufacturing, Audytor i Pełnomocnik SZJ ISO 9001:2015 i IATF 16949:2016. Pasjonat piłki nożnej, członek zarządu Klubu Sportowego.

Robert Bujas

Koordynator Projektów Optymalizacyjnych LUQAM, specjalista w zakresie zarządzania, Lean Management oraz Problem Solving. Absolwent Akademii Górniczo-Hutniczej w Krakowie. Od początku kariery zawodowej związany z obszarami jakości, optymalizacji i zarządzania produkcją. Od przeszło dekady realizuje w LUQAM konsultacje i szkolenia zarówno dla wielooddziałowych międzynarodowych korporacji, jak i kilkunastoosobowych firm rodzinnych. W ramach realizacji projektów pomagał kilkuset firmom z różnych branż, w tym firmom usługowym (szpital, urząd administracji państwowej, bank) i produkcyjnym (poza większością popularnych sektorów takich jak automotive, aerospace, żywność, przemysł lekki, także np. przemysł farmaceutyczny, petrochemiczy, hutniczy i zbrojeniowy), realizującym produkcję zarówno seryjną, jak i jednostkową.

FAQ

1

Do kogo skierowane są studia podyplomowe Manager Projektów AI?

Studia podyplomowe Manager Projektów AI są adresowane do osób z doświadczeniem w pracy z technologiami informatycznymi, a także do osób, które dopiero rozpoczynają swoją karierę zawodową w tym obszarze. Wiedza zdobyta podczas zajęć będzie przydatna zarówno w pracy w przedsiębiorstwach zajmujących się sztuczną inteligencją, jak i w każdej innej branży, w której wykorzystywane są nowoczesne technologie.

2

Jakie są warunki ukończenia studiów?

Aby, ukończyć studia podyplomowe Manager Projektów AI i zdobyć wszystkie certyfikaty należy zdać egzamin dyplomowy oraz mieć minimum 70% obecności na zajęciach.

3

W jaki sposób zapisać się na studia ze sztucznej inteligencji?

Aby zapisać się na studia należy wypełnić formularz rejestracyjny na stronie WSZIB, znajdujący się pod adresem: https://suszi.wszib.edu.pl/suszi-web/recruitment/candidateForm/postgraduate, dostarczyć dokumenty wymagane w procesie rekrutacji oraz dokonać opłaty rezerwacyjnej w wysokości 100 zł, zaliczanej na poczet czesnego.

4

Czy trzeba posiadać wykształcenie wyższe, aby zapisać się na studia podyplomowe?

Aby zapisać się na studia podyplomowe Manager Projektów AI prowadzone przez Luqam wystarczy ukończyć studia wyższe na poziomie licencjackim lub inżynierskim.

5

Czy można rozłożyć płatność za studia na raty?

Płatność za studia podyplomowe można rozłożyć na dwie raty. Terminy płatności określone są w umowie o naukę.

Masz pytania? Napisz do nas!

    Zapisz się do newslettera: